G09-02

# **Guidelines for quantified risk assessments at Ports and Wharves**

**Explosives Regulatory Division Explosives Safety and Security Branch** 

27 February 2018



# **Contents**

| 1                    | . Purpose                                        | 2 |  |
|----------------------|--------------------------------------------------|---|--|
| 2                    |                                                  |   |  |
| 3                    |                                                  |   |  |
| Methodology Approval |                                                  |   |  |
|                      | Person conducting the Quantified Risk Assessment | 2 |  |
|                      | Risk Acceptance Criteria                         |   |  |
|                      | Acceptance procedure                             |   |  |
| 4                    | . Validity of assessment                         | 3 |  |
| 5                    |                                                  | ∠ |  |
| Appendix A           |                                                  |   |  |
| , ,۲۲                | Quantity Distance Principles Method              |   |  |
|                      | IMESAFR Assessment Details                       |   |  |

# 1. Purpose

Pursuant to S. 203.1 (1) (b) of the Explosives Regulations, 2013 a quantified risk assessment (QRA) that meets acceptance criteria is required to allow a Port or Wharf to conduct the activity of loading or unloading explosives. The purpose of this document is to provide guidance on the completion of a quantified risk assessment (QRA).

The ER2013 allows the use of risk assessments to determine the quantity of explosives that may be loaded or unloaded at ports and wharves. This guideline outlines the methodology and procedures for conducting, completing, and submitting a risk assessment that will meet the regulations of ER2013 on a wharf or port.

# 2. Scope

This document applies to ports and wharves in Canada. In accordance with ER2013, this document describes the requirements for a quantified risk assessment.

This document covers the loading and unloading of containerized explosives only. The *Explosives Regulations,* 2013 S.203.1 does not apply to a vessel that is in transit and does not load or unload explosives.

# 3. Background, Methodology, and criteria

Quantified risk assessment is intended to quantify the risk of harm to persons and property that result from loading and unloading of explosives at a port or wharf and ensure that risk is acceptable. Quantified risk assessment is widely used in the explosives industry to determine the safety of an activity involving explosives.

## **Methodology Approval**

In accordance with ER2013, S.203.1 (6) the Chief Inspector of Explosives is responsible for the approval of a methodology to be used in a quantified risk assessment. This entails ensuring that the methodology is capable of accurately calculating the risks to people and property resulting from loading and unloading of explosives at ports or wharves according to the criteria of S.203.1 (6). The approval of methodologies may include consultation with industry stakeholders, explosives specialists, and case studies.

An example of a quantified risk assessment methodology that is acceptable for use at ports and wharves and approved by the Chief Inspector of Explosives is IMESAFR, published by APT Research, Huntsville Alabama, USA.

# Person conducting the Quantified Risk Assessment

A quantified risk assessment must be carried out by a qualified person. A qualified person must have knowledge of explosives properties and behaviors, their hazard classifications, and handling best practices. They must also have knowledge of the packaging methods of commercial explosives. A qualified person must have knowledge and experience in the conduct of quantified risk assessments for the handling of explosives and have training on the specific QRA methodology being used.

## **Risk Acceptance Criteria**

In accordance with ER2013, S.203.1 (5) (d) the quantified risk assessment must demonstrate that the risk of harm to people and property is within acceptable limits. The risk associated with loading or unloading of explosives at a port is acceptable if it does not subject the general public to risks greater than those they might be otherwise subjected to in daily life. Consequently, risk criteria must be established. These risk criteria acceptable limits are established in accordance with widely accepted industry practice. The criteria are subdivided into individual risk or the risk to any one person and the societal risk or the group risk.

ERD accepts the individual risk and group risk criteria recommended by the Institute Makers of Explosives (IME) in the document *Guidelines for IMESAFR-Based QRAs for Ports* published by the Institute Makers of Explosives (IME):

Annual Individual Risk:  $1 \times 10^{-6}$ , i.e. for the person most at risk, the fatality rate is less than 1 person per 1,000,000 years.

Annual Group Risk:  $1 \times 10^{-5}$ , i.e. the total fatality rate will be less than 10 people per million years.

The IMESAFR User's Manual, and the IMESAFR Technical Manual provide additional information regarding the IME criteria.

These risk criteria are in agreement with Canadian Society for Chemical Engineering publication *Risk Assessment* – *Recommended Practices for Municipalities and Industry*. Their criterion for annual individual risk is  $1.0 \times 10^{-6}$  and was established from guidance of the Major Industrial Accidents Council of Canada (MIACC).

These risk criteria can be contextualized by comparing to the risks of common household activities and ailments whose risks are well known. For example, the risk of fatality from drowning in the bathtub is  $1.23 \times 10^{-6}$  (1992-1994 USA).

Due to the conservative nature of quantity distance principles (QD) a survey conducted using QD would be deemed to meet these risk criteria.

# **Acceptance procedure**

The quantified risk assessment is to be submitted to the Explosives Regulatory Division for review to ensure its proper completion. The assessment will be approved in accordance with ER2013, S.203.1 (7).

Upon approval of a QRA an inspector of Explosives communicate to the requestor the explosives limits denoted by berth and any additional safety measures relevant to the limits of explosives for ensuring public safety in accordance with ER2013, S.203.1 (2).

A similar communication will be issued where the submission is for a renewal.

# 4. Validity of assessment

An assessment is valid for a five-year period or until the circumstances change.

After a five-year period, the Port Authority or the municipality responsible for the wharf may reapply in writing for renewal. The renewal application must confirm that the circumstances have not changed and that the

survey is still valid. A new assessment is not necessary where the circumstances have not changed. When the situation remains the same, the corresponding risk to persons and property is not changed and a new assessment is not necessary. A renewal will also be valid for a five-year period.

An assessment conducted prior to the coming into force of ER2013 S.203.1 may be submitted for renewal to the Explosives Regulatory Division (ERD). Assessments that did not use the methodologies described in this document will not be renewed.

#### 5. General

The risks presented in a QRA are typically evaluated on an annual basis, i.e. the risk to the public per year. In some cases there are few explosives handling operations at the site during the year. This low frequency of operations can dilute the results of an annual assessment. Where there are fewer than 1000 hours per year of explosives loading or unloading operations, an hourly QRA must be provided in addition to the annual-based QRA to ensure a proper review of limits.

When a quantity of explosives are being loaded or unloaded from a vessel, that vessels entire cargo of explosives must be considered as part of the limits for a given berth.

In accordance with ER2013, S. 203.1 (d) additional safety measures can include, but are not limited to:

- The presence of a well defined and established Emergency Response Action Plan (ERAP)
- The limitations of activities to coincide with reduced traffic i.e. loading does not occur during rush hour

Safety measures will be predominantly location specific. For further guidance, contact ERD.

The quantity distance principles (QD) are highly conservative when applied at ports and wharves for hazard divisions 1.1/1.5 and 1.2. This conservatism was a factor in adopting quantified risk assessments for the loading and unloading of explosives at ports and wharves.

This is not the case for hazard division 1.3 and 1.4. The behavior of 1.3 and 1.4 closely follows QD described in National Standard of Canada CAN/BNQ 2910-510/2015 *Explosives - Quantity Distances* published by the *Bureau de Normalisation du Québec*. Quantity distance principles meet the current commercial needs of port authorities for the loading and unloading of 1.3 and 1.4.

# **Appendix A**

The following section is intended for use by third party contractors conducting quantified risk assessment for port authorities or a municipality responsible for a wharf and describes some of the specific inputs required.

# **Quantity Distance Principles Method**

The quantity distance principles method can be used with the following port/wharf specific considerations.

- i. The explosives container on the vessel must be considered the potential explosion site (PES).
- ii. The exposed sites (ES) for the port include all of the buildings, public traffic routes and places people are likely to gather (further defined in the BNQ manual).

Conduct the assessment following the procedure laid out in the standard to determine the allowable explosives, by berth, by explosives hazard division, in NEQ for the port/facility.

#### **IMESAFR Assessment Details**

The following section details the specific considerations required for conducting a risk assessment using the IMESAFR software. Additional guidance is provided by the IMESAFR User's Manual, and the IMESAFR Technical Manual. Also, a very helpful document is *Guidelines for IMESAFR-Based QRAs for Ports* published by the Institute Makers of Explosives (IME).

## Model set-up considerations

The recommended background image type for a model is a Registered Image. These include metadata that the software will use for measuring distances within the model.

Alternatively, an aerial open-source photo may be imported as a base image. The calibration of the base image is important and evidence the calibration was done accurately must be provided.

#### Potential Explosion Site (PES) considerations

Table 1 shows inputs for the PES. The building identifier is up to the stakeholder, in most cases this would correspond to the berth identifier.

The building category is ISO Container, the maximum NEQ considered reasonable for a single container is 20 000 kg. This may be lower based on explosives with less-dense packaging.

| Up to the stakeholder                        |
|----------------------------------------------|
| ISO Container                                |
| ISO Container                                |
| Based on 20 000 kg each                      |
| Use either Rock/Hard Clay or Concrete        |
| # of hours the explosives are present at the |
| port annually                                |
| Risk Based Evaluation Distance (RBED) Should |
| be enlarged to include each area of interest |
| Pick appropriate                             |
| Based on activities                          |
| Should match Max                             |
| Based on Explosives                          |
|                                              |
| Commercial Loading/Unloading                 |
| Pick as appropriate                          |
|                                              |
|                                              |

**Table 1** - Potential Explosion Site IMESAFR inputs

Table 1 contains recommended inputs. There are likely instances where these inputs are not suited to the situation at the port. In each case, detailed explanations must be provided.

The hours of operation must include all hours, on an annual basis, explosives are present at the port or wharf. This value may be subdivided to show hours where explosives are present but not being loaded or unloaded i.e. explosives remaining-on-board (ROB).

It is recommended to include photos of the site and PESs. An aerial photo as well as a berth layout are helpful. It is incumbent on the applicant to ensure that the assessment is clear and easily understood what berth is under consideration.

It may be necessary to repeat the analysis for more than one desired hazard division as the software is limited to one-hazard division per model. This should be made clear where the applicant wishes to establish a unique limit for multiple hazard divisions.

Special consideration should be given to hazard division 1.2. Details on the specifics of the explosives and how they will be treated by the model must be provided.

## Exposed Site (ES) considerations

Table 2 are input recommendations for ESs. The table provides some of the required inputs. In each case, the input selected must be justified and the report must clearly explained how it represents the situation. As an example, an open-source street view or photo of a residential building would help justify the input selection for the % of glass.

Municipality supplied traffic data must be used where the ES is a public traffic route.

The building identifier is largely up to the stakeholder however, whatever is chosen must be made clear in the report. A plan view of the site or a legend should be used for clarity.

Vulnerable buildings are buildings of particular importance, historical significance, or weak construction. An example includes a hospital or glass facade high-rise residence. Specific care and attention should be provided as to how those buildings are modelled.

| Building Identifier   | Up to the stakeholder              |
|-----------------------|------------------------------------|
| Building Category     | Pick appropriate                   |
| Building Type         | Pick appropriate                   |
| Roof Type             | Pick appropriate                   |
| Floor Area            | Pick appropriate                   |
| Window Type           | Pick appropriate                   |
| % Glass on ES         | Pick appropriate                   |
| Debris Arrival Time   | Default is likely appropriate      |
| Number of People      | Pick appropriate                   |
| Hours Present         | Pick appropriate – 8760 for houses |
| Exposure Confidence   | Pick appropriate                   |
| Exposed persons upper | Pick appropriate                   |
| limit                 |                                    |
| Exposed persons lower | Pick appropriate                   |
| limit                 |                                    |
| Exposed persons       | Pick appropriate                   |
| correlation           |                                    |

Table 2 – Exposed Site IMESAFR inputs

Provide details on how any buildings greater than 3 stories were modelled. Specifically how their storey height and occupants were considered in the model, including the relative distance differences to the PES given their additional height.

Building occupancy data must be justified in each case. The complexity of the exposed site dictates how detailed the occupancy inputs must be. For example, residential occupancy should be assumed continuous. Alternatively, a commercial occupancy can be based on business hours.